
BUSSTEPP Homework 3:

More Exercises on Numerical Quantum Mechanics

Other Exercises

September 2, 2003

1 Numerical Exercises

1.1 Harmonic Oscillator

We continue with the harmonic oscillator,

V (x) = 1
2mω2x2, (1)

S = ma

{
N−1∑
i=0

1
2 [xi+1 − xi)/a]2 + 1

2(ωa)2(xi/a)2
}

. (2)

Exercise III.1: Run with the parameters in Table 1 to vary the lattice spacing. Plot E1, E2, and E2/E1

vs. a. Verify also that the energies do not depend on m. Results are in Fig. 1.
Explain the striking constancy of E2/E1 = 2.

Solution III.1: The canned programs require somewhat different input (a, τ,N):

a 0.5 1 2 4 8
τ/π 2 2 2 2 2
N 128 64 32 16 8

Make a directory for each parameter set, with appropriate input files, abtain E1 and E2 from effective
masses.

Because the system is quadratic, we can solve for all eigenvalues of the transfer operator. First set
x = q

√
a/m, which scales m out of the problem. The transfer operator:

(T̂Ψ)n(qt+1) =
∫

dqt√
2π

exp
{
− 1

2 [1 + 1
2 (ωa)2]q2

t+1 + qt+1qt − 1
2 [1 + 1

2 (ωa)2]q2
t

}
Ψ(xt)

The simple harmonic oscillator has wave functions

Ψn(q) = Nneα2q2
∫

du√
2π

une−
1
2u2+2iαuq,

1



Table 1: Parameters for exploring the dependence on a.
ma 0.5 1 1.5 2 3
ωa 0.5 1 1.5 2 3
N 128 64 44 32 22

Figure 1: E1 and E2 vs. lattice spacing a. The points are Monte Carlo simulation. The lines
are the exact solution at non-zero a.
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choosing an integral representation, because we have T in an integral representation. For now α is
not known. A straightforward, but tedious, manipulation of Gaussian integrals shows that Ψn is an
eigenfunction of T̂ with eigenvalue

Tn = e−(n+
1
2 )Ea,

where
cosh(Ea) = 1 + 1

2 (ωa)2 ⇒ Ea = 2 sinh−1( 1
2ωa).

One finds that this works out if α2 = 2 sinh(Ea).
Thus, all the discretization effect can be absorbed into a redefinition of the frequency.

1.2 Anharmonic Oscillator

Now add an anharmonic term

V (x) = 1
2mω2x2 + λx4, (3)

S = ma

{
N−1∑
i=0

1
2 [xi+1 − xi)/a]2 + 1

2(ωa)2(xi/a)2 + (λa5/ma)(xi/a)4
}

. (4)

From first-order perturbation theory

En = nω

(
1 +

3λ(n + 1)
2m2ω3

)
(5)

so the correction is small if λ � m2ω3. The energies as a function of λ are shown in Fig. 2

Exercise III.2: Compute the energies E1 and E2 as a function of λ at a lattice spacing so that dis-
cretization effects are small. Start with λ small enough so that perturbation theory should be accurate,
but extend into the non-perturbative regime.

Solution III.2: My result used ma = ωa = 1 and λa5.

1.3 Double-well Oscillator

The exercise in this subsection uses the potential

V (x) = −1
2mω2x2 + λx4 (6)

Note the minus sign in front of the quadratic term. There are two minima. Now the first excited
state is almost degenerate with the ground state.

Exercise III.3: Return to the program that compute xavg as a function of c. Plot them vs. c. Explain
the behavior of xavg, Fig. ??.

Solution III.3: So far I have not found a set of simulation parameters such that the system switches
back and forth. If you find some, e-mail ask@fnal.gov

3



Figure 2: E1 and E2 vs. anharmonicity λ, in lattice units.
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2 Other Exercises

The Standard Yukawa interactions of quarks are

LY = −
G∑

i,j=1

[
ŷd

ijQ̄
i
Lφ Dj

R + ŷu
ijQ̄

i
Lφ̃ U j

R + h.c.
]
, (7)

with hypercharges YU = 2/3, YD = −1/3, YQ = 1/6.

Exercise III.4: What must the hypercharge of the Higgs doublet(s) be?

Solution III.4:

Yφ = 1/3 + 1/6 = 1/2
Yφ̃ = −2/3 + 1/6 = −1/2

In continuum gauge theories the parallel transporter (or Wilson line) is defined to be

U(x, y) = P exp
(∫ x

y
dz ·A

)
. (8)

Exercise III.5: Show that U(x, y) → g(x)U(x, y)g−1(y) under gauge transformations.

Solution III.5: The proof is immediate for an infinitesimally short path. Any path can be built out of
short paths, by definition of the path-ordering symbol.

The Wilson plaquette action is

S =
β

2N

∑
x,µ,ν

Pµν(x) (9)

where
Pµν = Re tr[1− Uµ(x)Uν(x + ae(µ))U †

µ(x + ae(ν))U †
ν (x)]. (10)

Exercise III.6: Show that the plaquette action reduces to the Yang-Mills action when a → 0.

Solution III.6: It is convenient to focus on a single µν plaquette, located (for convenience) at the
origin 0. Choose a gauge so that Aν(x) = 0. Fix the gauge further so that on the hypersurface xν = 0
Aµ(x) = 0 too. Then

Pµν(0) = Re tr[1− U†
µ(ae(ν))] = Re tr{1− P exp[−a

∫ 1

0

Aµ(sae(ν))ds]}
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Now in this gauge
Aµ(sae(ν)) = Aµ(0) + sa∂νAµ = sa∂νAµ

because Aµ(0) = 0 when xν = 0. The first term to survive the trace is the second order in sa∂νAµ:

Pµν(0) = −a4Re tr[12 (∂νAµ(0))2] == −a4 1
2 tr[(Fνµ(0))2]

The last equality holds in our gauge Fνµ(0) = ∂νAµ. Since the left-most and right-most expressions are
both gauge invariant, they hold in all gauges.

Next repeat for all plaquettes, yielding

Pµν(x) = −a4 1
2 tr[(Fνµ(x))2] = +

1
4

∑
a

(F a
µν)2

no sum on µν. With my convention for the generators tr[tatb] = − 1
2δab.

Thus ∑
x,µ,ν

Pµν(x) = a4
∑

x

1
4
(F a

µν(x))2 =
∫

d4x
1
4
(F a

µν(x))2

with summation conventions on the right-hand side. Normalization indentifies β/2N = 1/g2
0 .
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